III B.Tech-II Semester–Regular/Supplementary Examinations March 2020

VLSI DESIGN

(ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Explain briefly about enhancement mode transistor action.
- b) Draw the transfer characteristics of a CMOS inverter.
- c) Define fall time.
- d) What is sheet resistance?
- e) What is the difference between Switch Logic and Gate Logic?
- f) Mention any three scaling factors for device parameters.
- g) What is Semi custom design?
- h) What is FPGA?
- i) What is Stuck-at model?
- j) Compare CMOS and Bipolar transistor.
- k) List out the Chip Level Test Techniques.

Page 1 of 2

PART – B

Answer any <i>THREE</i> questions. All questions carry equal m $3 \ge 16 = 4$	
2. a) Determine Pull-up to Pull-down ratio for an nMOS inverter driven by another nMOS inverter.	8 M
b) Explain a P-well process in a CMOS fabrication with suitable diagrams.	8 M
3. a) Tabulate the encoding scheme for a simple single meta nMOS process with respect to various layers.	l 8 M
b) Estimate the CMOS inverter delay.	8 M
4. a) Define and give the expressions for any four scaling fa of MOS device.	ctors 8 M
b) Realize a 2:1 MUX using transmission gates.	8 M
5. a) Design a Full Adder using PLA.	8 M
b) Explain about Gate Array Design.	8 M
6. a) Design Built-In-Self -Test (BIST) scheme for memorie	es. 8 M
b) Explain the key concepts of Design for testability.	8 M